
Foundations of Probabilistic Proofs

Alessandro Chiesa

Organization

Instructor: Alessandro Chiesa

Teaching Assistant: Giacomo Fenzi

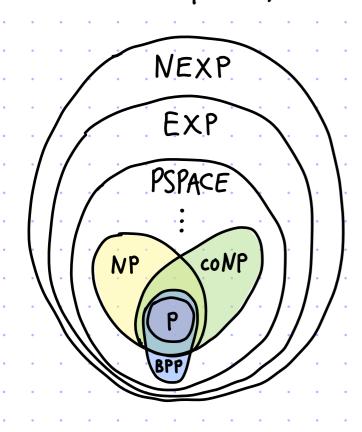
Lectures:

Tuesdays and Wednesdays 13:15-15:00. In person attendance/interaction. No recordings or live streaming.

Recitations: Wednesdays 15:15-16:00

Office hours:

- Alessandro → by appointment
- Giacomo → Mondays at 16:00 in BC242


Materials: probabilistic-proofs-course.org

Assignments: weekly homework + end-of-semester project

Background

- finite fields (Fg for prime g)
- · basics of linear codes (rate, distance, ...)
- · Univariate polynomials (F[X]) and multivariate polynomials (F[X1,...,Xn])
- · basic complexity theory:
 - machines, circuits, reductions
 - Cook-Levin theorem
 - basic complexity classes

Goals

- · understand different MODELS
 - interactive proofs (IPs)
 - probabilistically checkable proofs (PCPs)
 - interactive oracle proofs (IOPs)
- · understand their Power
 - check "hard" problems beyond BPP
 - exponential savings in communication or time
 - zero Knowledge
- · design & analyze

Course Plan

Unit 1: Interactive Proofs

- arithmetization
- sumcheck protocol
- IP=PSPACE
- low-degree extensions
- GKR protocol
- zero-knowledge IPs

Unit 2: Probabilistically Checkable Proofs

- linearity testing
- exponential-size PCPs
- low-degree testing
- polynomial-size PCPs
- sublinear verification

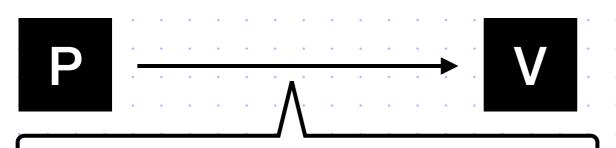
Unit 3: Interactive Oracle Proofs

- linear-size IOPs
- univariate sumcheck
- FRI protocol

Unit 4: Additional Topics

- holographic proofs
- proof composition
- PCP Theorem
- public vs. private coins
- limitations of probabilistic proofs
- parallel repetition
- hardness of approximation

Why Care?

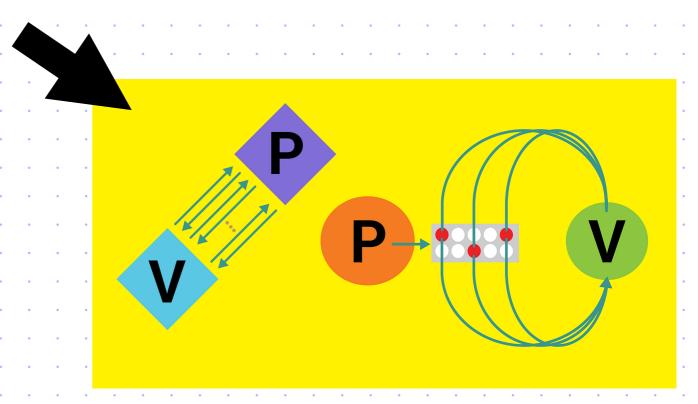

[1/3]

Philosophy

Probabilistic proofs are meaningful re-envisionings of the classical notion of a mathematical proof (which did not change much for 2000+ years).

Theorem.

There are infinitely many primes


Proof. Suppose that $p_1,...,p_n$ are all the primes.

Then $Q := p_1 \times \cdots \times p_n + 1$ is not a prime.

Some prime p_i must divide Q.

But this means that p_i divides 1.

Contradiction.

Theory

Probabilistic proofs are an invaluable perspective and set of tools to solve problems in the theory of computation (and beyond!).

privacy & scalability in cryptography

COMPUTATIONALLY SOUND PROOFS*

SILVIO MICALI[†]

Abstract. This paper puts forward a new notion of a proof based on computational complexity and explores its implications for computation at large.

hardness of approximation (PCP Theorem & co.)

Interactive Proofs and the Hardness of Approximating Cliques

Uriel Feige * Shafi Goldwasser † Laszlo Lovasz ‡ Shmuel Safra \S Mario Szegedy \P

power of entanglement

 $MIP^* = RE$

Zhengfeng Ji*1, Anand Natarajan^{†2,3}, Thomas Vidick^{‡3}, John Wright^{§2,3,4}, and Henry Yuen^{¶5}

Why Care?

Security

Probabilistic proofs are the algorithmic heart of super-efficient cryptographic proofs.

Such cryptographic proofs are a powerful tool in secure distributed systems and more.

2. scalability in blockchains ("roll-ups") (see www.12beat.com)

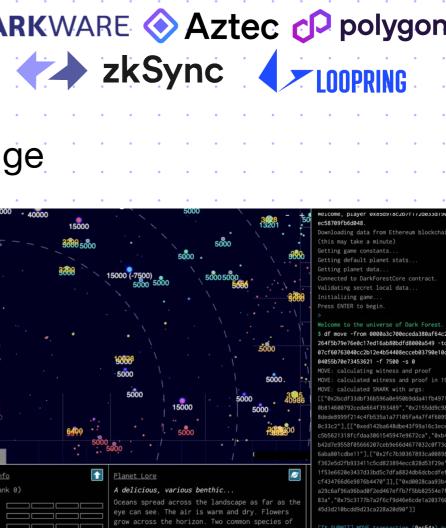
1. privacy-preserving digital currencies

🗫 STARKWARE 📀 Aztec 🗘 polygon zkSync (

super-efficient

cryptographic proofs

probabilistic


proofs

- 3. disclose software vulnerabilities in zero knowledge
- 4. digital identities with privacy
- 5. image authentication with privacy

N. P2P games!

Let's get started!

Bibliography

Background

Fundamentals of computational complexity:

Computational Complexity: A Modern Approach by Sanjeev Arora and Boaz Barak.

- Turing machines, complexity classes, and reductions (1.2-1.5, 2.2).
- The Cook–Levin theorem (2.3).
- P, NP, PSPACE, NEXP, and their complete languages (1.6, 2.1, 2.6, 4.1, 4.2).
- The computation model of Boolean circuits, circuit satisfiability, and exponential size circuits (6.1-6.4, 6.8).
- Probabilistic computation and BPP (7.1-7.4).

(Theory of computation course) by Michael Sipser.

Finite fields and their properties:

- Forney's Introduction to finite fields (chapter 7).
- Sutherland's notes on finite fields and integer arithmetic.
- Guruswami's cheat sheet on finite fields.

Theory

- [Micali 2000]: Computationally sound proofs, by Silvio Micali.
- [FGLSS 1996]: Interactive proofs and the hardness of approximating cliques, by Uriel Feige, Shafi Goldwasser, Laszlo Lovasz, Shumel Safra, Mario Szegedy.
- [JNVWY 2020]: MIP* = RE. Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, Henry Yuen. (Article)

Practice

- Privacy-preserving digital currencies: Zcash, Monero, Aleo.
- Roll-ups: Starkware, Aztec, Polygon, zkSync,
 Loopring, I2beat.com.
- zkVMs: RISC0, Succinct, Jolt.
- Software vulnerabilities, digital identies with privacy, image authentication, P2P games